Week 1	Week 2 We	ek 3 Week 4	Week 5 Week 6	Week 7		Week 1	Week 2 Week 3 Week 4 Week	کان Week 6	Week 7	
Number	r and Place Value	Multiplication a	and division; fractions	Geometry:	-	Descri	Fractions; percentages 3/4 weeks	Ratio and proportion		
Number and Place value; decimal		Identify commor	> Identify common factors, common multiples			be	Use common factors to simplify fractions; use	Solve problems involving the		
number		and prime numb	and prime numbers.		lf	positi	common multiples to express fractions in the	relative sizes of two	o quantities	
Read and wri	te numbers up to 10 00	0 ≻ Multiply one dig	> Multiply one digit numbers with up to 2 decimal		ŧ	ons on	same denomination.	where missing valu	es can be found	
000 in figures	s and words.	places by whole	numbers.	e	i le	the	fractions > 1	by using integer mu	litiplication and	
Determine the	e value of each digit in	Divide numbers	up to 4 digits by a one digit	position	Э	full	Indulority > 1	\sim Solve problems inv	olving similar	
numbers up t	to 10 000 000.	number using sh	ort division and <i>interpret the</i>	s on a 2-		coordi	and subtract fractions with different	shapes where the s	scale factor is	
Order and co	mpare numbers up to 1	0 <u>remainders app</u>	ropriately in a context.	D grid		nate	denominators and mixed numbers	known or can be fo	und.	
000 000 inclu	iding on a number line.	Use written met	hods for division in cases where	as		grid	Multiply proper fractions and mixed numbers b	y Solve problems involv	ving unequal	
Round any nu the percent 1	100 100 1000 10 000 1	the answer has t	wo decimal places.	coordin		(all	whole numbers, supported by materials and	sharing and grouping	using knowledge	
	.0, 100, 1000, 10 000, 10	Solve problems v	which require answers to be	ates in		four	diagrams.	of fractions and multi	iples.	
 Round decim 	als with 2 and 3 decima	rounded to degr	ees of accuracy.	the first		quadr	Multiply simple pairs of proper fractions, writin	2		
places up to t	the nearest whole numb	Der two-digit whole	number using the formal	quadran		ants)	the answer in its simplest form [for example, $\frac{1}{4}$			
and 1 or 2 de	cimal place.	written method	of long multiplication	t Deseth		Draw and	$\frac{1}{1} = \frac{1}{2}$			
Round any w	hole number (with up t	0 8 > Divide numbers	up to 4 digits by a two-digit	> Describ		translate	 2 8' Divide proper fractions by whole numbers [for 			
digits) to a re	quired degree of accura	acy. whole number u	sing the formal written method	e		simple	$a = \frac{1}{2} + 2 - \frac{1}{2}$			
Interpret neg	ative numbers in contex	xt, of long division,	and interpret remainders as	movem		shapes	$\frac{1}{3} \frac{1}{6}$			
count forwar	ds and backwards with	whole number re	emainders, fractions, or by	ents		on the	Associate a fraction with division and calculate			
positive and i	negative whole number	s rounding, as app	ropriate for the context	betwee		coordin	0.2751 for a simple fraction [for example, $\frac{3}{2}$]			
context and	colculate intervals acres	including roundi	ng to multiples of 10, 20 and 50	nosition		ate	0.375 for a simple fraction [for example, $\frac{1}{8}$]			
		(links can be mad	de to decimal remainders.)	sas		plane,	Fractions docimals and norcontages including			
Read Roman	numerals to 1000 (M) a	d >Use their know	ledge of the order of	translati		and	in different contexts			
recognise yea	ars written as Roman	operations to o	carry out calculations	ons of a		reflect	Solve problems which require knowing			
numerals.		involving the fo	our operations (BODMAS)	given		them in	percentage and decimal equivalents of $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$			
Solve number	r problems and practica	I > Solve problems i	nvolving addition, subtraction,	unit to		the axes	$\begin{pmatrix} 2' & 4' & 5' \\ 4 \end{pmatrix}$	·		
problems inv	olving all of the above.	multiplication an	nd division (including mental,	the			$\frac{1}{5}$ and those with a denominator of a multiple			
Identify the v	alue of each digit to 3	jottings, written	methods)	left/righ			of 10 or 25. \triangleright Solve problems involving the calculations of			
decimal place	es and multiply and divid	de > Perform mental	calculations with mixed	t and			percentages (e.g. of measures) such as 15% of			
	un to 3 decimal places	operations and la	arge numbers	up/dow			360 and the use of percentages for comparison			
	ap to 5 accimal places.	Use estinations and	determine in the context of a	n						
		nrohlem and de	grees of accuracy	> Plot						
		problem, and de	Brees of accuracy.	specifie						
				d points						
				and						
				draw						
				sides to						
				complet						
				e a given						
				polygon						
				Identify,						
				describe						
				and						
				represent						
				the						

	position of a shape following a reflection or translation , using the appropriat e language, and know that the shape has not change			

Spring Term											
Week 1 Week 2 Week 3 Weel	4 Week 5	Week 6	Week	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6		
 Measurement (4 weeks) Convert between different units of metric measure example, kilometre and metre; centimetre and metre; centimetre and metre; millilitre] Use, read, write and convert between standard un converting measurements of length, mass, volume time from a smaller unit of measure to a larger univice versa, using decimal notation to up to three deplaces Solve problems involving the calculation and converunits of measure, using decimal notation up to three defined places where appropriate Understand and use approximate equivalences betweet in the and common imperial units such as impounds and pints Convert between miles and kilometres Measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres Calculate and compare the area of rectangles (inclusquares), including using standard units, square centimetres (cm²) and square metres (m²), and est the area of irregular shapes Recognise that shapes with the same areas can have different perimeters and vice versa Recognise when it is possible to use formulae for a volume of shapes Calculate the area of parallelograms and triangles Estimate volume (for example using 1cm3 blocks to cuboids and capacity. Calculate, estimate and compare volume of cubes cuboids using standard units, including cubic centin (cm3) and cubic metres (m3), and extending to ot units [for example, mm3 and km3]. Tell and write the time from an analogue clock, inc clocks with Roman numerals with increasing accurates the nearest minute. 	Statistics[for tre; e and> Interpret and discrete and discrete and discrete and discrete and discrete and discrete and for methods, incl charts and tim > Solve compari difference pro- information pro- charts, pictog and other grading thes,ween thes,Relate the graph representation of represent change > Solve compari difference pro- information pro- graphtding imateComplete, rea information pro- graphtding trea> Complete, rea information pro- graphtding imate> Interpret and difference pro- information pro- graphtding trea> Complete, rea information in including timetrea> Interpret and difference pro- information in as an averagethese to solve trea> Calculate and int as an averageto buildand netres heruding trey to> Note the sector solve trea	present continuous data riate graphical uding bar ne graphs ison, sum and oblems using resented in bar rams, tables phs. nical of data to re over time son, sum and blems using resented in a line d and interpret tables, tables construct pie e graphs and use problems erpret the mean	7 Half term	Geometry: Proper 4 weeks Geometry: Proper Compare and c quadrilaterals a Identify 3-D s from 2-D rep Distinguish by on reasoning point rather t Identify 3-D s from 2-D rep Know angless compare acu Draw given a Identify: ang),angles at a p 1800), other Use the prop and find miss Distinguish by on reasoning Draw 2-D sha Recognise, da making nets Compare and properties an triangles, qua Illustrate and diameter and twice the rad Recognise an straight line, angles.	rties of shape rties of shape classify geometric ind triangles base hapes, including of resentations etween regular ar about equal side: than measuring.) shapes, including of resentations are measured in te, obtuse and rei- ngles, and measured point on a straigh multiples of 900, perties of rectangli- ting lengths and a etween regular ar- about equal side operties of rectangli- ting lengths and a etween regular ar- about equal side opes using given d escribe and build d classify geometric d sizes and find u adrilaterals, and re- lius gles where they r or are vertically o	shapes, includi d on their prop cubes and other nd irregular poly s and angles (lo cubes and other degrees: estima flex angles re them in degr one whole turr t line and 2 1 a les to deduce re ngles nd irregular poly s and angles limensions and simple 3-D shap ic shapes based inknown angles egular polygons rcles, including nd know that th neet at a point, pposite, and fir	ng erties. r cuboids, ygons based oking at this r cuboids, ate and rees (o) n (total 3600 turn (total elated facts ygons based angles bes, including d on their in any s radius, ne diameter is are on a nd missing	 Algebra Use simple formula Generate and descrii Express missing nu Find pairs of numb with two unknown Enumerate possibil variables. 	ae be linear number sequences mber problems algebraically. ers that satisfy an equation s lities of combinations of two		

	Summer Term												
Week 1	Week 2	Week 3	Week 4	Week 5	Week 6		Week 1	Week 2	Week	Week 4	Week 5	Week	Week
									3			6	7
A						Half term			Assessme nt Week				